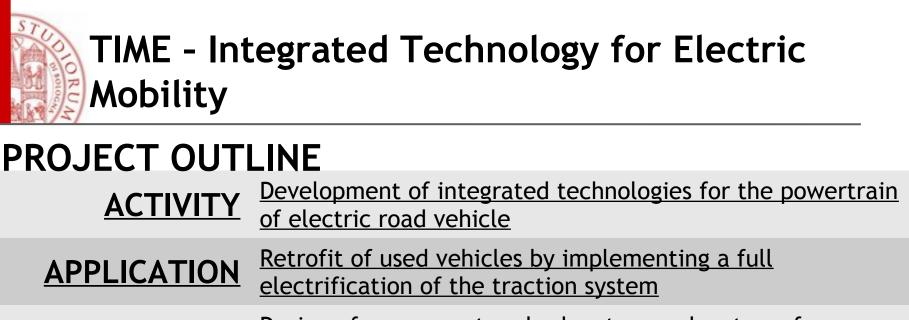


TIME Integrated Technology for Electric Mobility



Prof. Claudio Rossi LEMAD Lab. of power electronic and electric drives for sustainable mobility University of Bologna - ITALY claudio.rossi@unibo.it

Cortile d'Ercole, Palazzo Poggi - Bologna

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Design of component and subsystem and systems for:

MAIN RESULT

- <u>complete electric powertrain</u>
- · vehicle elements interacting with the powertrain Retrofit procedure

TARGETFull performance, long range, low cost EV

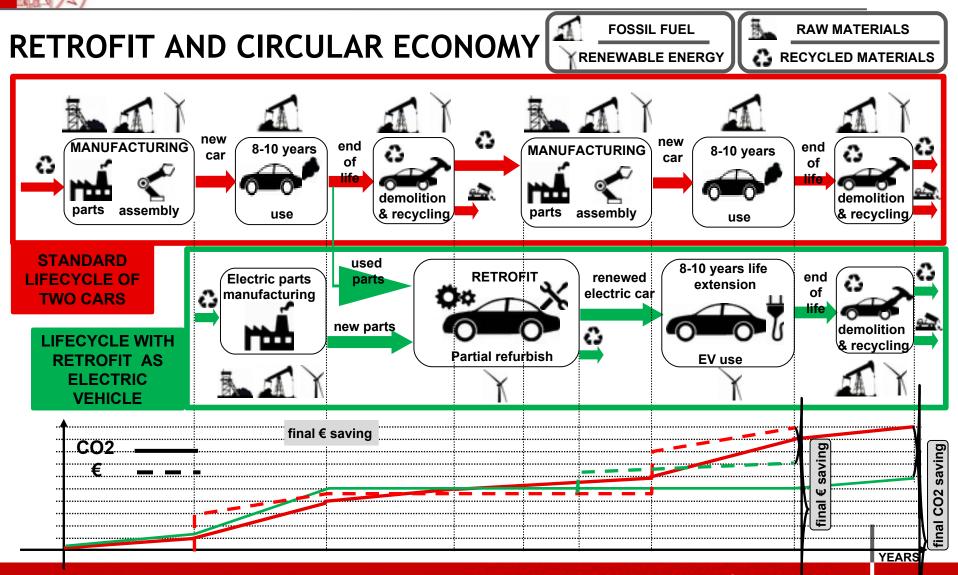
M1 segment A vehicles (compact cars)

FUTURE OBJECTIVE

M1 segment B , 2.2t N1 vehicles

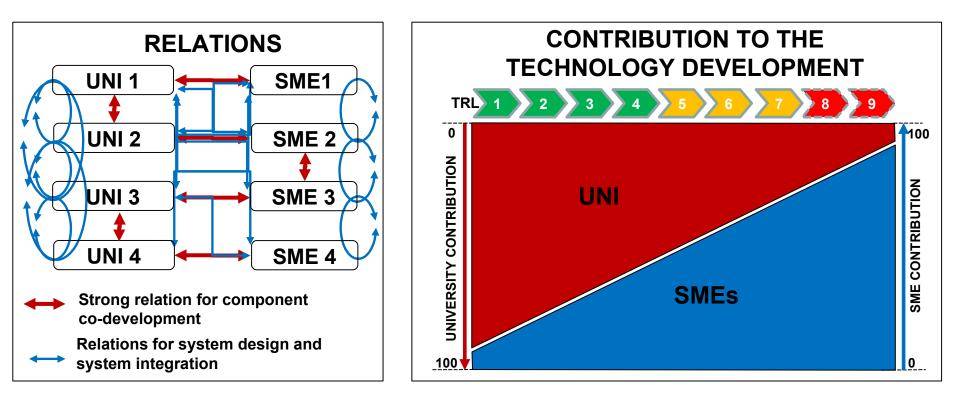
ALMA MATER STUDIORUM * UNIVERSITÀ DI BOLOGNA

TIME - Integrated Technology for Electric Mobility


RETROFIT CONCEPT

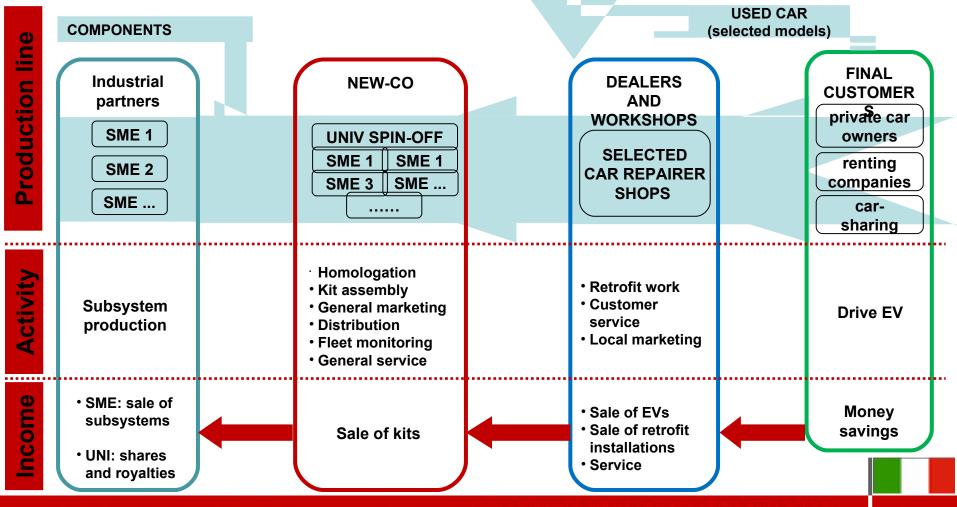
COMPONENT and PROCUDURE must be homologated by transportation authorities. Now possible in few EU Countries (Italy,...). TRANSFORMATION must be realized by authorized workshops.

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA


TIME - Integrated Technology for Electric Mobility

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

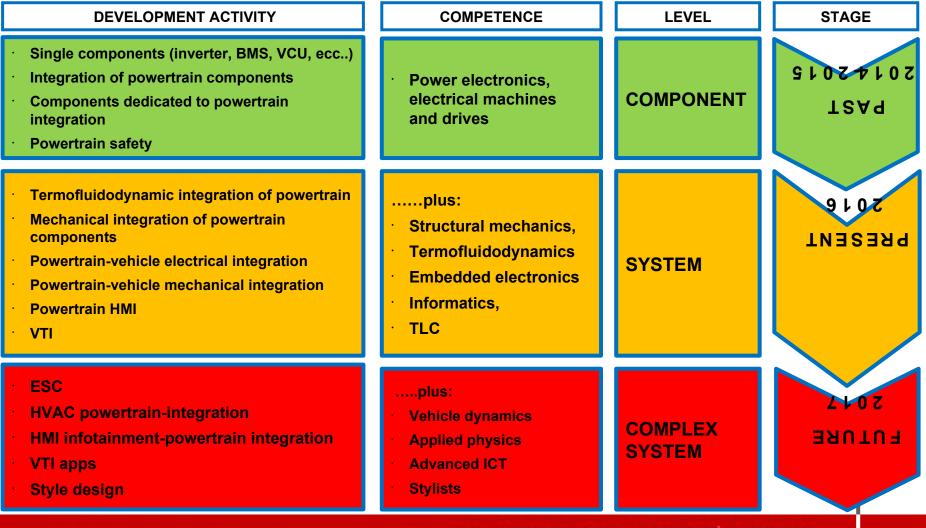
TIME FRAMEWORK - DEVELOPMENT STAGE



- UNI: University group
- SME: Small Medium Enterprise (industrial partner)
- TRL: Technology Readiness Level (1: basic concept;..... 9: ready for

production)

TIME - Integrated Technology for Electric Mobility


TIME FRAMEWORK - COMMERCIAL STAGE

STORUM

TIME - Integrated Technology for Electric Mobility

Project phases

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

5 DI ORIONI

TIME - Integrated Technology for Electric Mobility

1st PROJECT OUTCOME

Base vehicle	FIAT Panda model 169			PERFORMANCE	UNIT	VALUE
				Max speed	[<u>km/h]</u>	<u>108</u>
SPECIFICATION	UNIT	VALUE		Max. acceleration	[g]	<u>0.37</u>
Rated motor power	[<u>kW]</u>	<u>12.0</u>		Acceleration time 0-10km/h	<u>[s]</u>	<u>0.82</u>
Max. motor power	[<u>kW]</u>	<u>24.0</u>	1 [Acceleration time 0-30km/h	<u>[s]</u>	<u>2.9</u>
Stored energy	[kWh]	<u>16.4</u>		Acceleration time 0-50km/h	[<u>s]</u>	<u>6.1</u>
On board battery charger pow	<u>/er [kW]</u>	<u>2.2</u>		Acceleration time 0-90km/h	<u>[s]</u>	<u>22</u>
Recharge standard		IEC 61851 Mode 3-A		Acceleration time 0-100 m	[<u>s]</u>	<u>9.3</u>
				Acceleration time 0-500 m	<u>[s]</u>	<u>26.7</u>
Max recharge time 0 to 100%	<u>ه [h]</u>	<u>8</u>		Max. slope	[%]	<u>35</u>
Number of passengers		<u>4</u>		Continuous slope at 30km/h	[%]	<u>8</u>
Mass in running order	[kg]	950		Max. pulling force	[N]	<u>4350</u>
Dashboard		Two Southand 7" color touch screen		Energy consumption on Artemis urban driving cycle	[Wh/km]	<u>90</u>
Meb interfacefor powertrainWeb interfacemonitoring andremote service		toring and		<u>Range on</u> Artemis urban driving cycle	<u>[km]</u>	<u>190</u>

TIME - Integrated Technology for Electric Mobility

DEI - LEMAD Laboratory of power electronics and drives for sustainable mobility and renewable energy

Prof. Claudio Rossi

University of Bologna ITALY claudio.rossi@unibo.it +39-0512093564 +39-3204365449 www.die.unibo.it

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA