Rinnovabili • Accumuli residenziali

Accumuli residenziali, il mercato europeo crescerà del 400% in 5 anni

Nuovi dati mostrano che il solare e l'accumulo domestici in Europa sono aumentati di 140.000 unità nel 2020. Questa è la prima volta che sono stati installati più di 100.000 sistemi a batterie nel Continente in un periodo di 12 mesi

Accumuli residenziali
Via depositphotos.com

 Accumulo domestico a batterie, i 5 paesi primi della classe

(Rinnovabili.it) – Il mercato europeo degli accumuli residenziali è destinato ad esplodere. In senso buono. Spinto dalla costante diffusione del fotovoltaico domestico, l’energy storage prenderà sempre più spazio nelle case europee. Lo riferisce Solar Power Europe nel suo nuovo European Market Outlook for Residential Battery Storage.

Il rapporto fornisce alcune previsioni sull’evoluzione dell’accumulo fotovoltaico di piccola taglia, stimando una crescita di oltre il 400% entro il 2025. In altre parole entro cinque anni, la capacità di questo segmento dovrebbe passare dai 3 GWh di fine 2020 a ben 12,8 GWh. Trend rosei che si fondano sulle ottime prestazioni del mercato degli accumuli residenziali, registrate in piena pandemia.

“Nonostante la crisi sanitaria del COVID-19, per la prima volta il mercato europeo dei sistemi di stoccaggio a batterie ha raggiunto la storica scala di GWh, per un totale di 1.072 MWh di capacità di stoccaggio installata in un solo anno. Con circa 140.000 sistemi di batterie registrate nel 2020, questa è stata anche la prima volta in cui sono state installate più di 100.000 unità in un unico anno”, si legge nel report.

Il documento analizza la sinergia tra fotovoltaico domestico e batterie, dimostrando la convenienza in termini di costi di questa accoppiata tecnologica. Soprattutto in momento delicato come quello attuale dove i prezzi dell’energia elettrica stanno salendo in tutta Europa. In Germania lo scorso anno, spiega l’associazione, le famiglie che hanno installato sistemi solari e di accumulo hanno beneficiato di un costo livellato dell’elettricità di 12,2 centesimi di euro al kWh. Quasi un terzo del normale prezzo delle tariffe elettriche.

Non sorprende dunque sapere che proprio in Germania gli accumuli residenziali stiano trovando casa. Al punto che il Paese oggi dispone del 70% della nuova capacità installata nel 2020. Seguono i mercati di Italia, Regno Unito, Austria e Svizzera. “Con l’aumento della popolarità del solare residenziale, sempre più famiglie si stanno rendendo conto che i sistemi di accumulo domestico massimizzeranno il valore dei loro sistemi fotovoltaici”, ha commentato Walburga Hemetsberger, CEO di SolarPower Europe. “Solare e lo stoccaggio sono la risposta chiara alla volatilità dei prezzi dell’energia”.

Le previsioni per il mercato italiano degli accumulo residenziali

“Grazie ai grandi incentivi erogati attraverso il Superbonus 110%, prevediamo una forte crescita delle installazioni di batterie in Italia”, scrive SolarPower Europe. Secondo il loro Scenario Medio, saranno installati 122 MWh fino alla fine del 2021, per un totale di 16.500 batterie. Ciò equivale a una crescita del 29% rispetto alla capacità installata nello scorso anno.

Prevediamo un aumento significativo anche nel 2022, con un mercato annuo di 137 MWh e una crescita del 12% anno su anno. Tuttavia, c’è la possibilità che il mercato sia molto più ampio di quello, a condizione che non ci siano ostacoli significativi per accedere al Superbonus. La conclusione più ottimistica delle nostre prospettive prevede 195 MWh nel 2021 e 232 MWh nel 2022. Con la fine del sistema di incentivi nel 2023, la nostra aspettativa è che il mercato si prenderà una pausa quell’anno e riprenderà trazione fino al 2025 come fotovoltaico residenziale le installazioni continuano a crescere”. E raggiungere i 188 MWh nel 2025.

Leggi anche Sistemi di accumulo in Italia, attivi oltre 50mila per 405MWh

Rinnovabili •
About Author / Stefania Del Bianco

Giornalista scientifica. Da sempre appassionata di hi-tech e innovazione energetica, ha iniziato a collaborare alla testata fin dalle prime fasi progettuali, profilando le aziende di settore. Nel 2008 è entrata a far parte del team di redattori e nel 2011 è diventata coordinatrice di redazione. Negli anni ha curato anche la comunicazione e l'ufficio stampa di Rinnovabili.it. Oggi è Caporedattrice del quotidiano e, tra le altre cose, si occupa quotidianamente delle novità sulle rinnovabili, delle politiche energetiche e delle tematiche legate a tecnologie e mercato.


Rinnovabili • Batterie al sodio allo stato solido

Batterie al sodio allo stato solido, verso la produzione di massa

Grazie ad un nuovo processo sintetico è stato creato un elettrolita di solfuro solido dotato della più alta conduttività per gli ioni di sodio più alta mai registrata. Circa 10 volte superiore a quella richiesta per l'uso pratico

Batterie al sodio allo stato solido
via Depositphotos

Batterie al Sodio allo Stato Solido più facili da Produrre

La batterie allo stato solido incarnano a tutti gli effetti il nuovo mega trend dell’accumulo elettrochimico. E mentre diverse aziende automobilistiche tentano di applicare questa tecnologia agli ioni di litio, c’è chi sta percorrendo strade parallele. É il caso di alcuni ingegneri dell’Università Metropolitana di Osaka, in Giappone. Qui i professori Osaka Atsushi Sakuda e Akitoshi Hayash hanno guidato un gruppo di ricerca nella realizzazione di batterie al sodio allo stato solido attraverso un innovativo processo di sintesi.

Batterie a Ioni Sodio, nuova Frontiera dell’Accumulo

Le batterie al sodio (conosciute erroneamente anche come batterie al sale) hanno conquistato negli ultimi anni parecchia attenzione da parte del mondo scientifico e industriale. L’abbondanza e la facilità di reperimento di questo metallo alcalino ne fanno un concorrente di primo livello dei confronti del litio. Inoltre l’impegno costante sul fronte delle prestazioni sta portando al superamento di alcuni svantaggi intrinseci, come la minore capacità. L’ultimo traguardo raggiunto in questo campo appartiene ad una ricerca cinese che ha realizzato un unità senza anodo con una densità di energia superiore ai 200 Wh/kg.

Integrare questa tecnologia con l’impiego di elettroliti solidi potrebbe teoricamente dare un’ulteriore boost alla densità energetica e migliorare i cicli di carica-scarica (nota dolente per le tradizionali batterie agli ioni di sodio). Quale elettrolita impiegare in questo caso? Quelli di solfuro rappresentano una scelta interessante grazie alla loro elevata conduttività ionica e lavorabilità. Peccato che la sintesi degli elettroliti solforati non sia così semplice e controllabile. Il che si traduce in un’elevata barriera per la produzione commerciale delle batterie al sodio allo stato solido.

Un Flusso di Polisolfuro reattivo

É qui che si inserisce il lavoro del team di Sakuda a Hayash. Gli ingegneri hanno messo a punto un processo sintetico che impiega sali fusi di polisolfuro reattivo per sviluppare elettroliti solidi solforati. Nel dettaglio utilizzando il flusso di polisolfuro Na2Sx come reagente stechiometrico, i ricercatori hanno sintetizzato due elettroliti di solfuri di sodio dalle caratteristiche distintive, uno dotato della conduttività degli ioni di sodio più alta al mondo (circa 10 volte superiore a quella richiesta per l’uso pratico) e uno vetroso con elevata resistenza alla riduzione.

Questo processo è utile per la produzione di quasi tutti i materiali solforati contenenti sodio, compresi elettroliti solidi e materiali attivi per elettrodi“, ha affermato il professor Sakuda. “Inoltre, rispetto ai metodi convenzionali, rende più semplice ottenere composti che mostrano prestazioni più elevate, quindi crediamo che diventerà una metodologia mainstream per il futuro sviluppo di materiali per batterie al sodio completamente allo stato solido“.  I risultati sono stati pubblicati su Energy Storage Materials and Inorganic Chemistry .

Rinnovabili •
About Author / Stefania Del Bianco

Giornalista scientifica. Da sempre appassionata di hi-tech e innovazione energetica, ha iniziato a collaborare alla testata fin dalle prime fasi progettuali, profilando le aziende di settore. Nel 2008 è entrata a far parte del team di redattori e nel 2011 è diventata coordinatrice di redazione. Negli anni ha curato anche la comunicazione e l'ufficio stampa di Rinnovabili.it. Oggi è Caporedattrice del quotidiano e, tra le altre cose, si occupa quotidianamente delle novità sulle rinnovabili, delle politiche energetiche e delle tematiche legate a tecnologie e mercato.


Rinnovabili • fotovoltaico materiale quantistico

Fotovoltaico, ecco il materiale quantistico con un’efficienza del 190%

Un gruppo di scienziati della Lehigh University ha sviluppato un materiale dotato di una efficienza quantistica esterna di 90 punti percentuali sopra quella delle celle solari tradizionali

fotovoltaico materiale quantistico
via Depositphotos

Nuovo materiale quantistico con un assorbimento solare medio dell’80%

Atomi di rame inseriti tra strati bidimensionali di seleniuro di germanio e solfuro di stagno. Questa la ricetta messa a punto dai fisici Srihari Kastuar e Chinedu Ekuma nei laboratori della Lehigh University, negli Stati Uniti, per dare una svecchiata alla prestazioni delle celle solari. Il duo di ricercatori ha così creato un nuovo materiale quantistico dalle interessanti proprietà fotovoltaiche. Impiegato come strato attivo in una cella prototipo, infatti, il nuovo materiale ha mostrato un assorbimento solare medio dell’80%, un alto tasso di generazione di portatori fotoeccitati e un’efficienza quantistica esterna (EQE) record del 190%. Secondo gli scienziati il risultato raggiunto supera di gran lunga il limite teorico di efficienza di Shockley-Queisser per i materiali a base di silicio e spinge il campo dei materiali quantistici per il fotovoltaico a nuovi livelli. 

leggi anche Fotovoltaico in perovskite, i punti quantici raggiungono un’efficienza record

L’efficienza quantistica esterna

Tocca fare una precisazione. L’efficienza quantistica esterna non va confusa con l’efficienza di conversione, il dato più celebre quando si parla di prestazioni solari. L’EQE rappresenta il rapporto tra il numero di elettroni che danno luogo a una corrente in un circuito esterno e il numero di fotoni incidenti ad una precisa lunghezza d’onda

Nelle celle solari tradizionali, l’EQE massimo è del 100%, tuttavia negli ultimi anni alcuni materiali e configurazioni avanzate hanno dimostrato la capacità di generare e raccogliere più di un elettrone da ogni fotone ad alta energia incidente, per un efficienza quantistica esterna superiore al 100%. Il risultato di Kastua e Ekuma, però, rappresenta un unicum nel settore.

Celle solari a banda intermedia

Per il loro lavoro due fisici sono partiti da un campo particolare della ricerca fotovoltaica. Parliamo delle celle solari a banda intermedia (IBSC – Intermediate Band Solar Cells), una tecnologia emergente che ha il potenziale per rivoluzionare la produzione di energia pulita. In questi sistemi la radiazione solare può eccitare i portatori dalla banda di valenza a quella di conduzione, oltre che direttamente, anche in maniera graduale. Come?  “Passando” per l’appunto attraverso stati di una banda intermedia, livelli energetici specifici posizionati all’interno della struttura elettronica di un materiale creato ad hoc. “Ciò consente a un singolo fotone di provocare generazioni multiple di eccitoni attraverso un processo di assorbimento in due fasi“, scrivono i due ricercatori sulla rivista Science Advances.

Nel nuovo materiale quantistico creato dagli scienziati della Lehigh University questi stati hanno livelli di energia all’interno dei gap di sottobanda ideali. Una volta testato all’interno di una cella fotovoltaica prototipale il materiale ha mostrato di poter migliorare l’assorbimento e la generazione di portatori nella gamma dello spettro dal vicino infrarosso alla luce visibile. 

La rivoluzione dei materiali quantistici

Il duo ha sviluppato il nuovo materiale sfruttando i “gap di van der Waals”, spazi atomicamente piccoli tra materiali bidimensionali stratificati. Questi spazi possono confinare molecole o ioni e gli scienziati dei materiali li usano comunemente per inserire, o “intercalare”, altri elementi per ottimizzare le proprietà dei materiali. Per la precisione hanno inserito atomi di rame tra strati di seleniuro di germanio e solfuro di stagno. “Rappresenta un candidato promettente per lo sviluppo di celle solari ad alta efficienza di prossima generazione – ha sottolineato Ekuma – che svolgeranno un ruolo cruciale nell’affrontare il fabbisogno energetico globale“.

Rinnovabili •
About Author / Stefania Del Bianco

Giornalista scientifica. Da sempre appassionata di hi-tech e innovazione energetica, ha iniziato a collaborare alla testata fin dalle prime fasi progettuali, profilando le aziende di settore. Nel 2008 è entrata a far parte del team di redattori e nel 2011 è diventata coordinatrice di redazione. Negli anni ha curato anche la comunicazione e l'ufficio stampa di Rinnovabili.it. Oggi è Caporedattrice del quotidiano e, tra le altre cose, si occupa quotidianamente delle novità sulle rinnovabili, delle politiche energetiche e delle tematiche legate a tecnologie e mercato.